metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

catena-Poly[nickel(II)-bis(u-2-aminoethanesulfonato- $\kappa^3 N, O:O'; \kappa^3 O:N, O'$]

Feng Yang,^a Zhi-Hong Wu^b and Jin-Hua Cai^b*

^aKey Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry Education of China), School of Chemistry & Chemical Engineering, Guangxi Normal University, Guilin 541004, People's Republic of China, and ^bDepartment of Chemistry and Life Science, Hechi University, Yizhou, Guangxi 546300, People's Republic of China

Correspondence e-mail: cjhzse@163.com

Received 16 May 2010; accepted 28 May 2010

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.003 Å; R factor = 0.027; wR factor = 0.072; data-to-parameter ratio = 12.6.

In the title polymeric complex, $[Ni(C_2H_6NO_3S)_2]_n$, the Ni^{II} ion occupies a special position on an inversion centre and displays a slightly distorted octahedral coordination geometry, being linked to four sulfonate O atoms and to two N atoms of the taurine ligands. The sulfonate groups doubly bridge symmetry-related Ni^{II} centers, forming polymeric chains along the *a* axis.

Related literature

For general background to taurine complexes and their derivatives, see: Bottari & Festa (1998); Zhang & Jiang (2002); Zeng et al. (2003); Zhong et al. (2003). For our previous work on taurine complexes, see: Cai et al. (2004, 2006); Jiang et al. (2005).

Experimental

Crystal data

$[Ni(C_2H_6NO_3S)_2]$	V = 485.9 (3) Å ³
$M_r = 306.99$	Z = 2
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 5.1003 (17) Å	$\mu = 2.44 \text{ mm}^{-1}$
b = 8.231 (3) Å	T = 293 K
c = 11.673 (4) Å	$0.20 \times 0.16 \times 0.08 \text{ mm}$
$\beta = 97.492 \ (4)^{\circ}$	

Data collection

Bruker SMART APEX CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 1999) $T_{\min} = 0.632, \ T_{\max} = 0.829$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.027$	H atoms treated by a mixture of
$wR(F^2) = 0.072$	independent and constrained
S = 1.06	refinement
954 reflections	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
76 parameters	$\Delta \rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3}$

2116 measured reflections

 $R_{\rm int} = 0.026$

956 independent reflections

881 reflections with $I > 2\sigma(I)$

Table 1 Selected bond lengths (Å).

Ni1-N1 ⁱ	2.054 (2)	Ni1-O1 ⁱ	2.0916 (17)
Ni1-N1 ⁱⁱ	2.054 (2)	Ni1-O2	2.1185 (18)
Ni1-O1 ⁱⁱ	2.0916 (17)	Ni1-O2 ⁱⁱⁱ	2.1185 (18)

Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) x - 1, y, z; (iii) -x, -y + 2, -z + 2.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We are grateful to the Youth Foundation of Guangxi Province (No. 0832090) for funding this study. We also thank the startup foundation for Advanced Talents of Hechi University (No. 2008QS-N019)

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2285).

References

Bottari, E. & Festa, M. R. (1998). Talanta, 46, 91-99.

- Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cai, J.-H., Jiang, Y.-M. & Ng, S. W. (2006). Acta Cryst. E62, m3059-m3061.
- Cai, J.-H., Jiang, Y.-M., Wang, X.-J. & Liu, Z.-M. (2004). Acta Cryst. E60, m1659-m1661
- Jiang, Y.-M., Cai, J.-H., Liu, Z.-M. & Liu, X.-H. (2005). Acta Cryst. E61, m878m880.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zeng, J.-L., Jiang, Y.-M. & Yu, K.-B. (2003). Acta Cryst. E59, m1137-m1139.
- Zhang, S. H. & Jiang, Y. M. (2002). Chin. J. Inorg. Chem. 18, 497-500.
- Zhong, F., Jiang, Y. M. & Zhang, S. H. (2003). Chin. J. Inorg. Chem. 6, 559-602.

supplementary materials

Acta Cryst. (2010). E66, m748 [doi:10.1107/S1600536810020325]

catena-Poly[nickel(II)-bis(μ -2-aminoethanesulfonato- $\kappa^3 N, O:O'; \kappa^3 O:N, O'$)]

F. Yang, Z.-H. Wu and J.-H. Cai

Comment

Taurine, an amino acid containing sulfur, is indispensable to human beings because of its applications in medicine and biochemistry (Bottari & Festa, 1998; Zhang & Jiang, 2002; Zeng *et al.*, 2003; Zhong *et al.*, 2003). Several taurine complexes and their derivatives have recently been prepared in our laboratory (Cai *et al.*, 2004; Jiang *et al.*, 2005; Cai *et al.*, 2006). As part of our ongoing investigation, the title polymeric Ni^{II} complex, (I), has been prepared and its structure determined.

A segment of the polymeric structure of (I) is illustrated in Fig. 1. The Ni^{II} ion is coordinated by four sulfonate O atoms and to two N atoms of the taurine ligands, displaying distorted octahedral coordination geometry. The sulfonate anions act as bridging ligands in (I). Neighbouring Ni atoms are bridged by two sulfonate anions, to form a zigzag polymeric chain along the *a* axis, as shown in Fig. 2. The polymeric chain has a repeat unit formed by two taurine and two Ni^{II} atoms related by an inversion centre, which coincides with the centre of the eight-membered Ni₂S₂O₄ ring formed by the atoms of two bridging ligands and the Ni atoms; the distance between the two Ni atoms is 5.100 (12) Å. In the structure of the title compound, there are two symmetry-independent "active" H atoms; both of them belong to the NH₂ group of the taurine ligand. They form intramolecular hydrogen bonds with sulfonate atom O3.

Experimental

A solution of taurine (1.0 mmol) and KOH (1.0 mmol) in anhydrous methanol (10 ml) was added slowly to a solution of Ni(CH₃COO)₂ (1.0 mmol) in anhydrous methanol (10 ml). After stirring for 10 min, it was then dropped into a 25 ml Teflon-lined stainless steel reactor and heated at 393 K for five days. Thereafter, the reactor was slowly cooled to room temperature and green block-shaped crystals suitable for X-ray diffraction were collected.

Refinement

H atoms were positioned geometrically (C—H = 0.97 Å and N—H = 0.80 Å) and included in the refinement in the ridingmodel approximation, with $U_{iso}(H) = 1.2U_{eq}(\text{carrier atom})$.

Figures

Fig. 1. A segment of the polymeric structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms) 中中中中中中

Fig. 2. The one-dimensional polymeric chain of the title complex.

F(000) = 316

 $\theta = 3.0 - 27.6^{\circ}$

 $\mu = 2.44 \text{ mm}^{-1}$ T = 293 K

Block, green

 $0.20\times0.16\times0.08~mm$

 $D_{\rm x} = 2.098 {\rm Mg m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 783 reflections

catena-Poly[nickel(II)-bis(μ -2-aminoethanesulfonato- $\kappa^3 N, O:O'; \kappa^3 O:N, O'$)]

Crystal data

[Ni(C₂H₆NO₃S)₂] $M_r = 306.99$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 5.1003 (17) Å b = 8.231 (3) Å c = 11.673 (4) Å $\beta = 97.492 (4)^\circ$ $V = 485.9 (3) \text{ Å}^3$ Z = 2

Data collection

Bruker SMART APEX CCD area-detector diffractometer	956 independent reflections
Radiation source: fine-focus sealed tube	881 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.026$
ϕ and ω scans	$\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 1999)	$h = -5 \rightarrow 6$
$T_{\min} = 0.632, T_{\max} = 0.829$	$k = -6 \rightarrow 10$
2116 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.027$ $wR(F^2) = 0.072$ S = 1.06954 reflections 76 parameters 0 restraints 0 constraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.044P)^2 + 0.1P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.44$ e Å⁻³ $\Delta\rho_{min} = -0.43$ e Å⁻³

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.0000	1.0000	1.0000	0.01738 (17)
S1	0.46761 (11)	0.95864 (7)	0.81432 (5)	0.01601 (18)
01	0.6637 (3)	1.0584 (2)	0.88498 (15)	0.0213 (4)
02	0.2125 (3)	0.9622 (2)	0.85798 (16)	0.0241 (4)
03	0.4412 (4)	1.0004 (2)	0.69297 (16)	0.0255 (4)
C1	0.5831 (5)	0.7569 (3)	0.8243 (2)	0.0228 (5)
H1A	0.4468	0.6865	0.7857	0.027*
H1B	0.7363	0.7484	0.7833	0.027*
C2	0.6583 (4)	0.6964 (3)	0.9465 (2)	0.0222 (5)
H2A	0.5292	0.7340	0.9946	0.027*
H2B	0.6568	0.5785	0.9469	0.027*
N1	0.9230 (4)	0.7550 (3)	0.99449 (19)	0.0196 (4)
H1C	0.963 (6)	0.719 (4)	1.058 (3)	0.024*
H1D	1.023 (6)	0.715 (4)	0.956 (3)	0.024*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0148 (2)	0.0200 (3)	0.0172 (3)	-0.00114 (15)	0.00144 (18)	-0.00013 (16)
S1	0.0137 (3)	0.0212 (3)	0.0132 (3)	0.0001 (2)	0.0022 (2)	-0.0009 (2)
01	0.0194 (8)	0.0201 (9)	0.0230 (9)	-0.0006 (7)	-0.0025 (7)	-0.0012 (7)
O2	0.0156 (8)	0.0361 (10)	0.0216 (10)	-0.0001 (7)	0.0062 (7)	0.0006 (7)
O3	0.0274 (10)	0.0341 (11)	0.0153 (10)	-0.0008 (7)	0.0038 (8)	0.0021 (7)
C1	0.0224 (12)	0.0205 (12)	0.0243 (13)	0.0017 (10)	-0.0015 (10)	-0.0071 (10)
C2	0.0196 (11)	0.0190 (11)	0.0287 (13)	-0.0028 (9)	0.0060 (10)	0.0014 (10)
N1	0.0204 (10)	0.0213 (10)	0.0171 (10)	0.0001 (9)	0.0018 (8)	0.0032 (9)

Geometric parameters (Å, °)

Ni1—N1 ⁱ	2.054 (2)	O1—Ni1 ^{iv}	2.0916 (17)
Ni1—N1 ⁱⁱ	2.054 (2)	C1—C2	1.513 (3)
Ni1—O1 ⁱⁱ	2.0916 (17)	C1—H1A	0.9700
Ni1—O1 ⁱ	2.0916 (17)	C1—H1B	0.9700
Ni1—O2	2.1185 (18)	C2—N1	1.474 (3)
Ni1—O2 ⁱⁱⁱ	2.1185 (18)	C2—H2A	0.9700
S1—O3	1.447 (2)	C2—H2B	0.9700
S1—O2	1.4584 (18)	N1—Ni1 ^{iv}	2.054 (2)
S1—O1	1.4630 (18)	N1—H1C	0.80 (3)
S1—C1	1.760 (2)	N1—H1D	0.80 (3)
N1 ⁱ —Ni1—N1 ⁱⁱ	180.000 (1)	S1—O1—Ni1 ^{iv}	132.53 (11)
N1 ⁱ —Ni1—O1 ⁱⁱ	86.09 (8)	S1—O2—Ni1	147.91 (12)
N1 ⁱⁱ —Ni1—O1 ⁱⁱ	93.91 (8)	C2—C1—S1	114.49 (17)

supplementary materials

N1 ⁱ —Ni1—O1 ⁱ	93.91 (8)	C2—C1—H1A	108.6
N1 ⁱⁱ —Ni1—O1 ⁱ	86.09 (8)	S1—C1—H1A	108.6
O1 ⁱⁱ —Ni1—O1 ⁱ	180.000 (1)	C2—C1—H1B	108.6
N1 ⁱ —Ni1—O2	93.06 (8)	S1—C1—H1B	108.6
N1 ⁱⁱ —Ni1—O2	86.94 (8)	H1A—C1—H1B	107.6
O1 ⁱⁱ —Ni1—O2	89.52 (7)	N1—C2—C1	110.97 (19)
O1 ⁱ —Ni1—O2	90.48 (7)	N1—C2—H2A	109.4
N1 ⁱ —Ni1—O2 ⁱⁱⁱ	86.94 (8)	C1—C2—H2A	109.4
N1 ⁱⁱ —Ni1—O2 ⁱⁱⁱ	93.06 (8)	N1—C2—H2B	109.4
O1 ⁱⁱ —Ni1—O2 ⁱⁱⁱ	90.48 (7)	C1—C2—H2B	109.4
O1 ⁱ —Ni1—O2 ⁱⁱⁱ	89.52 (7)	H2A—C2—H2B	108.0
O2—Ni1—O2 ⁱⁱⁱ	180.000 (1)	C2—N1—Ni1 ^{iv}	119.67 (16)
O3—S1—O2	111.34 (11)	C2—N1—H1C	110 (2)
O3—S1—O1	112.85 (11)	Ni1 ^{iv} —N1—H1C	108 (2)
O2—S1—O1	111.54 (11)	C2—N1—H1D	106 (2)
O3—S1—C1	106.05 (11)	Ni1 ^{iv} —N1—H1D	107 (2)
O2—S1—C1	107.59 (12)	H1C—N1—H1D	106 (3)
O1—S1—C1	107.09 (11)		

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+2; (ii) *x*-1, *y*, *z*; (iii) -*x*, -*y*+2, -*z*+2; (iv) *x*+1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A	
N1—H1D···O3 ^v	0.80 (3)	2.50 (3)	3.171 (3)	143 (3)	
N1—H1C···O3 ^{vi}	0.80 (3)	2.41 (3)	3.121 (3)	149 (3)	
Symmetry codes: (v) $-x+3/2$, $y-1/2$, $-z+3/2$; (vi) $x+1/2$, $-y+3/2$, $z+1/2$.					

